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ABSTRACT In the context of histological image classification, Multiple Instance Learning (MIL) methods
only require labels at Whole Slide Image (WsSI) level, effectively reducing the annotation bottleneck.
However, for their deployment in real scenarios, they must be able to detect the presence of previously
unseen tissues or artifacts, the so-called Out-of-Distribution (00OD) samples. This would allow Computer
Assisted Diagnosis systems to flag samples for additional quality or content control. In this work, we propose
an OOD-aware probabilistic deep MIL model that combines the latent representation from a variational
autoencoder and an attention mechanism. At test time, the latent representations of the instances are used
in the classification and OOD detection tasks. We also propose a deterministic version of the model that
uses the reconstruction error as OOD score. Panda (prostate tissue) and Camelyon16 (lymph node tissue) are
used as train/test in-distribution datasets, obtaining bag classification results competitive with current state-
of-the-art models. 00D detection is evaluated performing two experiments for each in-distribution dataset.
For Panda, Camelyon16 and ARTIF (prostate tissue contaminated with artifacts) are used as OOD datasets,
obtaining 100% AUC in both cases. For Camelyon16, Panda and BCELL (lymph node tissue diagnosed with
diffuse large B-cell lymphoma) are used as OOD datasets, obtaining AUCS of 100% and 97%, respectively.
Experimental validation demonstrates the models’ strong classification performance and effective OOD slide
detection, highlighting their clinical potential.

INDEX TERMS Out-of-distribution detection, multiple instance learning, variational autoencoder.

I. INTRODUCTION

Multiple Instance Learning (MIL) is a weakly-supervised
learning approach that has recently gained enormous popular-
ity [1], [2]. MIL drastically reduces the annotation effort [3],
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which is the main bottleneck in many medical Computer
Aided Diagnosis (CAD) systems. In MIL, each element in the
training set is called a bag, and it is composed of multiple
instances. Under the standard MIL assumption [4], each
instance has a hidden binary class label, and a bag is positive
if, and only if, one or more of its instances are positive.
Although different MIL assumptions have been proposed
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in the literatures [5] and [6] , the standard assumption of
a hidden binary label per instance is the most frequently
used [4].

MIL methods are faced with the task of correctly classifying
the bag and possibly the instances within the bag while
only using bag labels. This is the case of histological image
classification, where a frequently sought goal is to determine
whether a Whole Slide Image (WSI) contains tumorous
tissue [7]. In this case, the WSI is considered the bag, and the
instances are small patches from the slide.

There exist two main approaches to designing a MIL
classifier: instance-based MIL, where the individual instances
are considered to contain the discriminative information for
the classification [8]; and embedding-based MIL, where the
information extracted from the instances is combined to
create aricher representation of the whole bag to be classified.
See [9] for a recent and clear presentation of MIL approaches.
In practice, embedding-based models have shown superior
performance in the classification task. The main reason for
this is that aggregating the information from all the instances
produces a regularized bag representation which facilitates
the classification task [9], [10]. Therefore this approach is the
most frequently used in the recent literature.

Most of the state-of-the-art (SOTA) embedding-based deep
MIL models utilize an attention mechanism. The first was pro-
posed in [11] and is known as Attention-Based MIL (ABMIL).
This model creates permutation-invariant bag representations
using the importance of each instance for the classification
task. Usually, this results in positive instances in the bag
having higher attention values than negative ones, providing
an interpretable output of the model. MIL models based on
an attention mechanism have evolved a lot since ABMIL was
presented, refining their predictive metrics in a variety of
ways, such as introducing instance correlations [9], [12],
[13], using two branches to further detect key instances [14],
[15], or introducing mathematical operators that smooth the
attention values along neighbour instances [16], [17].

Although the accuracy of current SOTA deep MIL methods in
the classification task is very high, they fail at test time when
the input to the model does not have the same structural or
morphological features as the training data [18], [19]. In this
work, we follow [20], which describes anomaly or Out-of-
Distribution (0OD) detection as the process of identifying the
samples that do not belong to the training distribution (IN-
Distribution, IND).

In digital pathology, detecting OOD samples, either at bag
or instance level, is of crucial importance, since flagging a
sample as 00D alerts pathologists about the ignorance of
the model on the input data. In a real-world scenario, it is
common to find slides that contain secondary tumours unseen
during training. Tissue cross-contamination also occurs,
some instances in the bag come from a different tissue.
Furthermore, other artifacts such as blood, folds, or blur can
appear [21], [22]. The 00D literature distinguishes between
Near and Far 00D problems, which are characterized by their
difficulty. Following [23], in Near-OOD, the outlier and inlier
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classes are highly similar, while in Far-OOD, the outlier is
more distinct from the training distribution [24], [25].

The frequent appearance of OOD samples at test time poses
an important challenge to MIL models since, to the best of
our knowledge, they know what they know but, unfortunately,
they don’t know what they don’t know. Since they are trained
under the closed-world assumption with IND samples, they
expect test data to be drawn independently from the same
distribution. The main reason for the lack of OOD awareness
of current deep MIL methods is that they do not model the
underlying data distribution in the training set. Because of
this, current MIL models can only use model-agnostic OOD
scores like entropy [23] or max-logit [26], which are not
trained in the specific data distribution. While the existing
literature on the use of MIL in histological image classification
continues to grow [1], surprisingly, little attention has been
paid to the use of techniques that provide current MIL methods
with the ability to model the data distribution.

In this work, we tackle the MIL classification and OOD
detection problems by using a deep generative model coupled
with a MIL method. To be precise, we use a Variational
Autoencoder (VAE) which explicitly models the data distribu-
tion and calculates the likelihood of any given instance. The
probabilistic latent representations of the instances obtained
from the VAE are used in an Attention-Based MIL (ABMIL,
[11]) to classify IND bags. Furthermore, those representations
are used to compute the marginal likelihood of the instances,
which provides the basis for the calculation of a probabilistic
00D score. We name our method VAEABMIL. We also present
a deterministic version of VAEABMIL, named DAEABMIL,
in which the probabilistic representation is replaced by its
deterministic version that is simpler to optimize.

We apply the proposed models to two classification tasks
using two well-known datasets: Camelyonl6 and Panda.
We then present two Far-oOD detection setups, in which
the IND and OOD slides do not share the main organ type.
Finally, we present two Near-OOD detection experiments
using the BCELL and ARTIF datasets (only used as OOD data),
in which the IND and 00D slides share the main type of tissue
(breast and prostate tissue, respectively). We show that the
classification performance of VAEABMIL and DAEABMIL is
similar to that of the SOTA deep MIL models for IND data.
Furthermore, the OOD detection experiments show that our
models excel at detecting OOD samples. This constitutes
the main benefit of using VAEABMIL and DAEABMIL: while
achieving competitive results in bag-level classification, they
are in addition able to determine which bags do not belong
to the original IND dataset, which is a task that the rest
of the SOTA models are not designed to perform. Our
proposals are in fully agreement with [23]: OOD detection
is a capability Computer Assisted Diagnosis (CAD) systems
should be provided with. We achieve it by making use of the
latent representation produced by our models.

In summary, our contributions are the following:

o We introduce VAEABMIL, a novel probabilistic deep
MIL method that combines a VAE with ABMIL to
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perform IND classification and bag-level 0OD detection.
We also propose a deterministic version of the model,
named DAEABMIL, which shows optimization benefits.
VAEABMIL and DAEABMIL constitute the first MIL models
with trainable OOD scores.

o We perform an extensive experimentation to validate
and show the benefits of our proposal. We use Panda
and Camelyonl6 as train-test in-distribution datasets.
VAEABMIL and DAEABMIL obtain competitive bag clas-
sification results with current SOTA MIL models.

o In the 0OOD detection task, VAEABMIL and DAEABMIL
and their respectively tailored OOD scores LOGPX and
RECERR, are exhaustively compared against SOTA MIL
models using model-agnostic 0OD scores. Notice that,
so far, no tailored OOD scores have been defined
for them. A statistical significance analysis on OOD
performance is also included.

« Additionally, we provide a deep analysis of the impact
of two different feature extractors in the classification
and 00D detection metrics. We experimentally show, for
the first time in the OOD-MIL literature, the benefits of
using a foundation model for detecting OOD bags in MIL
problems.

The rest of the paper is organized as follows. In Section II
we first describe the related OOD detection work in digital
pathology and then we provide an overview of the ABMIL
method and variational autoencoders. In Section III we
present VAEABMIL first, then DAEABMIL (Section III-A), and
lastly we introduce the proposed OOD scores for both methods
(Section III-C). The experiments are presented in Section IV,
followed by the conclusions drawn from this work which are
explained in Section V. Lastly, further experimental analysis
is provided in Appendices A and B.

Il. BACKGROUND

In this section, we present the related work (Section II-A).
We then mathematically formulate the MIL problem and
describe the tools that provide the basis for constructing our
MIL method with OOD capabilities (Section II-B).

A. RELATED WORK
The popularity of MIL in digital pathology has grown
exponentially due its benefits in WSI classification. See [1],
[2], [27] for recent reviews of the SOTA methods.
Out-of-distribution detection undoubtedly plays a very
important role in computational pathology [18], [28], [29],
reflected by an increasing number of contributions. For
instance, [30] provides a comparative analysis of few-
shots-exposure and unsupervised uncertainty estimation
techniques, proposing a cosine distance-based OOD detection
approach for retinal OCT images. Notice that other reconstruc-
tion errors can also be used [31]. Deterministic uncertainty
estimations of classifiers and ensembles for 0OD threshold-
based detection are presented in [32] in the framework of
breast and prostate cancer detection in histopathological
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images. Furthermore, a probabilistic uncertainty estimation is
proposed in [33] using a Bayesian U-net to detect anomalies
in OCT images. In [21], a deep kernel model is used to detect
histological artifacts, blur, and folds in glass slides of bladder
tumour resections. Lastly, the most recent works review the
use of AnoDDPM [34] and AnoLDM [35] for OOD detection in
digital pathology. However, none of the previously mentioned
works are developed under the MIL framework.

The importance of using a good latent representation
of the data has been widely acknowledged in different
research areas, see, for instance [36] and [37]. VAEs provide
a good example of it and they have been frequently
used for standalone OOD detection [38], [39], [40]. In the
medical domain, they have been used for unsupervised
anomaly localization in CT scans [41] or anomaly detection
in electrocardiogram records [42], always outside the MIL
paradigm. In [43], a VAE is used to define a MIL model that
creates a disentangled representation of the instance features,
later used for OOD generalization: the task in which the model
is used on samples from another dataset and is expected
to maintain its classification performance. Note that OOD
generalization is not the same task as OOD detection, so [43]
does not propose a MIL based 00D model. Thus, the use of
VAES for OOD detection in the MIL framework remains, so far,
unexplored.

The aggregation of instance-level OOD scores to perform
00D detection is explored in [23], where multiple patch-level
CNNs are trained and the patch-level entropy is aggregated to
obtain a bag-level 0OD score. Notice that this is not a MIL
classification model but the use of the estimated patch-level
classification probabilities to define a bag-level OOD score.

To conclude this section, we remark that although recent
references on the use of OOD detection methods in WSI
classification exist, none of them has been formulated using
the MIL paradigm. Our VAEABMIL and DAEABMIL constitute
pioneering approaches on providing MIL methods with OOD
capabilities.

B. DEEP MULTIPLE INSTANCE LEARNING
Our work focuses on embedding 00D detection capabilities
in deep MIL classification models. For this reason, we start by
presenting the elements of the MIL setup for the classification
task. In MIL, each element of the dataset is a pair (X, y), where
X e R¥>*P is a bag with P € N the dimension of the feature
space provided by a pretrained encoder, and y is the bag label.
Each bag is composed of Nj, instances, X = [xq, - -, be]T.
In this work, we consider a binary classification problem.
Following the so-called standard MIL assumption [4], a bag is
positive if, and only if, at least one of its instances is positive.
That is, y = max{y;}}?, € {0, 1}, where y; is the label of the
instance x;. We consider our dataset to have B pairs, and we
will use the notation X? to denote the b—th bag of the dataset,
with instances x’l’ REREIN xﬁ,b. Unless necessary, we will omit
the bag reference (b) for simplicity.

The goal in the classification task is to learn a function that
maps each input bag to a label. At test time, a previously
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unseen bag X* is received by the model which outputs a
class for it. As indicated in the introduction, we will follow
the embedding-based approach to designing a MIL classifier
that solves the standard MIL problem. The model creates a
representation B of the bag by aggregating the information of
its instances and uses it to assign a label to each bag. To create
the aforementioned representation, the current most relevant
models are deep attention MIL models. These methods are
composed of three main blocks: a feature refiner, an attention
mechanism and a classifier. We now describe each of the
blocks individually.

First, in deep attention MIL models, each instance x; of the
bag is processed using a neural network g, the feature refiner,
with parameters 7. This creates a latent representation of that
instance z; = g,(x;) € RP, with D € N the latent space
dimension, which contains its most relevant information.
We denote by Z! = [zy, - - - , zy, ] the matrix containing the
latent representations of the instances in a bag.

In embedding-based MIL, the information of the instances
is aggregated to create a richer representation of the whole
bag that takes into account how important each instance is in
the bag representation. This importance value is often called
attention value, and it is widely used in many current deep
MIL models such as ABMIL [11], TRANSMIL [12] or DTFDMIL
[9]. In this work, we build upon the well known ABMIL
model, in which the attention module computes the vector
of attention values f as follows: considering W e RL*P and
w € RE to be learnable weights and L € N,

Fpiq = tanh(ZW!) € RV <L 1))
f = Fpigw € R, )

The softmax is applied to f to obtain the attention values that
are all positive and add up to one. Then, each obtained value
is multiplied by its corresponding embedding and aggregated
to obtain the final bag representation B as:

B := Z” Softmax(f) € R? 3)

This bag representation aggregates the information of the
instances of the bag according to their importance in the
classification task. Finally, we pass it through a simple linear
classifier ¢, : RP — [0, 1] with parameters y, which assigns
to each bag its probability of being of the positive class.

C. VARIATIONAL AUTOENCODERS

The usage of VAEs in MIL is the key proposal of our
work. In VAEs, instead of considering a single, deterministic
latent representation z for each input, they place a prior
distribution p(z) over that latent encoded representation.
Given z, a probabilistic reconstruction is obtained using
an observation model p(x | z). Typically, the prior is
chosen to be a standard Gaussian distribution p(z) =
N (0, T) since it enforces smoothness, as well as beneficial
structural and continuity properties in the latent space. The
observation model is also chosen Gaussian pg(x | z)
N(x | my(z), 092(2)1), where the mean function my(z) and
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covariance ng(z)l are parameterized by neural networks with
parameters 6.

With this selection of the prior and likelihood distributions,
predictions in VAEs are made by integrating over the
posterior distribution p(z | x) which, unfortunately, can not
be computed in closed form. For this reason, Variational
Inference (V1) [44] is often used as a form of approximating
the exact posterior using a Gaussian variational distribution

q4(2 | X)

P | %)~ qpz | X) = N@ | mp(x), 05D,  (4)

Bag

Bag
00D
Score

Encoder g4(z1 | x1)

" ® }
a4(22 | x3) -
) ) 4 8
=5 = =
'A gl
Sample < o

a5(zn [ xN)
@ ' Z(N) x

Sample

__J

FIGURE 1. Graphical overview of the structure of vAEABMIL. Each instance
Xx; is encoded to obtain its approximated posterior distribution q(z; | x;)
using the encoder of the VAE. Then, a sample z;(s) ~ q(z; | x;) is obtained,
which is used both in the classification and 0op detection tasks. The
classification is done using the Attention MIL paradigm on the samples
from the approximated posterior. The 00D detection is performed using
the decoder of the VAE.

where the mean and the covariance are parameterized
by neural networks (mg(x) and a(g(x), respectively) with
parameters ¢. To optimize the parameters of the likelihood
and posterior distributions we maximize the Evidence Lower
Bound (ELBO) [45], which lower bounds the marginal
likelihood of the data p(x). The ELBO in VAEs for a sample
x takes the form:

L5 x) = Egy@wllogpe(x | 2)] — KL(gp(z | %) || p(2)),

(&)

which can be optimized via Monte-Carlo Sampling [44].

IIl. PROPOSED METHODS

In this section, we propose a novel deep MIL model with OOD
capabilities named VAEABMIL, built upon a VAE, described
in Section II-C and the attention mechanism described in
Section II-B. The use of a VAE is motivated by the need to
model the data distribution in order to detect possible OOD
bags that may appear in the test set. The attention mechanism
in ABMIL is used since it is the base of current SOTA MIL
models. In VAEABMIL, instead of using the deterministic
latent embedding z (with no OOD capabilities) used in ABMIL,
we make use of a VAE which will replace the MIL feature
refiner g, and will be equipped with OOD capabilities. Notice
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that this is a main novelty and an important benefit of
VAEABMIL: it is a deep MIL model capable of both classifying
bags and also detecting OOD samples. For the embedded VAE,
we use the typical Gaussian observation and prior models
presented in Section II-C, which will allow us to define
a probabilistic 00D score (see Section III-C). Let us now
provide the mathematical formulation.

FIGURE 2. Probabilistic graphical depiction of VAEABMIL. Given the latent
variables Zb, the bag label y? is independent of the observed bag X°. We
use g, (Zb | Xb) for both the classification and oobp detection tasks.

Given an observed bag X? and denoting by Z” the asso-
ciated bag of random latent representations of its instances,
each Zf? is responsible for the probabilistic generation of
x/, i = 1,...,Np using the VAE formulation described
in Section II-C. We then make Z” solely responsible for
the MIL classification of the bag, that is, X? and yb are
conditionally independent given Z”. We further use the
attention mechanism in Equation (2) and the weighted-by-
attention average of the instances in Equation (3) to obtain a
bag representation B? that summarizes the information of the
instances. Using the bag representation, we can compute the
probability of the bag label p,, , (" | Z?) = Bern(c, (B?)),
with v = {W, w}. A complete overview of the model can be
observed in Figure 1. Also, the corresponding probabilistic
graphical model is displayed in Figure 2. Letting X =
{Xl’... ,XB}, Y = {yl,... ,yB} and Z = {Zl,--- ,ZB},
the joint distribution takes the form:

Doy (Y, X, Z) = oy (Y | Zpo(X | Z)p(Z)
B Np

=TT por0”12) ]| 120D | |.
b=1

Classification likelihood i=l VAE likelihood

(6)

where we have used the assumption of bag-level factorization
in the classification-likelihood term and the instance-level
factorization in the VAE-likelihood term. Notice that, for
each b, Y’ and X’ are independent given Z” but they
become dependent when ZP is integrated on. This makes
the unsupervised representation of the patches and the MIL
classification dependent tasks. Note that, by removing the
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randomness on Z? and ignoring the decoder, we obtain the
standard ABMIL. To make predictions, the latent variables Z”
are marginalized using the posterior distribution p(Z?|X?).
Unfortunately, this distribution cannot be calculated in closed
form and so we follow the procedure in VAEs, resorting to
a variational approximation that factorizes across bags and
instances. This variational posterior distribution takes the
form:

B B N,
4pZIX) = [ [ ap@"1X") = [T [ [ a0 @ | ¥
b=1 b=1i=1
B N
= [TTIN@ | mpxh). o5 x)N). @
b=1 i=1

where each mg and aqf are the ones defined for the
VAE (see Section II-C). Notice the simplification in the
isotropic structure of the posterior covariance approximation
for computational reasons, since the covariance matrix size
scales quadratically with the number of instances in a bag,
which can be very large depending on the patch and WSl sizes.
Using more complex posteriors would drastically increase
the optimization complexity of the model. We optimize the
parameters of our model, ¢, 6, v, ¥, by maximizing the ELBO
(or, equivalently, minimizing the minus ELBO), which in the
proposed model takes the form:

Pov,y (Y, X, Z)
Lygay X)) =Bz [log e (®)

46(ZX)
= Egy@io
o (o0 12T (o] 2hpe)
0og
[T5=1 T2 9o | %))
B
=" [Eyai oz, 0 1 29) )
b=1
Np
+ D By [log poxl | zf’)] (10)
i=1
Np
= > KL{gp@} | X0) 1l pzD)) | an

i=1

The term in (9) is the classification log likelihood, which
explains how well the model classifies the bags. The VAE log
likelihood, Equation (10), measures the quality of the instance
reconstruction of the VAE. The last term, (11) is the Kullback-
Leibler (KL) divergence between the variational posterior and
the Gaussian prior, which aims to regularize the variational
posterior. The last two terms together are responsible for the
00D detection and the learning of the manifold of the IND
data. Notice that the KL divergence is crucial to maintain
the properties of the latent space [46], therefore no term
can be suppressed from this loss in order to maintain the
performance of the model in both classification and OOD
detection tasks.
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A. A DETERMINISTIC VERSION OF VAEABMIL

Although the presented probabilistic model VAEABMIL is
theoretically sound, it is known that probabilistic models are
harder to optimize than deterministic ones. This provides
the motivation to derive DAEABMIL, a deterministic version
of VAEABMIL. To achieve this, we restrict the posterior
distribution of VAEABMIL in Equation (4) to be a Dirac’s
delta 6(z — my(x)). Then, the instance latent representations
Z become unique, rather than random variables. The loss
function for DAEABMIL then becomes:

B

LDAEABMIL(X Y) = z (M Ingv,y(yb | Zb)
b=1

“[)

(12)

b
X; —my(z;

where my (zf? ) is the decoding of zf.’ and u, o, B are positive
and add up to one. What is more, this model generalizes
ABMIL, since taking « = B = 0 ABMIL is recovered.
Notice here, as we did with VAEABMIL, that the last two
terms together are responsible for the OOD detection and
the learning of the manifold of the training IND data. This
manifold is now deterministic. With DAEABMIL we obtain
faster inference, but it loses the probabilistic prediction.

B. IND CLASSIFICATION PREDICTIONS

In VAEABMIL, to make classification predictions on new test
bags, we use the latent variables generated by the VAE. Given
a test bag X* = [xy, - - - , Xy, ] with N, instances, we define
ZE’S) = [z’l”(s)’ ... ,z;;fs)], where z;’(s) ~ qp(ZF | X7)is a
sample from the approximated posterior of instance x}. Then,
we approximate the predictive distribution using S Monte
Carlo samples as:

Puy 0" 1 X = / oy O* | Zp(Z*X*)dZ*
~~ /pv’y(y* | Z*)q¢(Z*|X*)dZ*
Zmy(y | Z7,). (13)

where, in the first equality, we have used the conditional
independence of y* and X* given Z*.

In the case of DAEABMIL, the instance embeddings are
deterministic, so classification predictions are obtained as in
ABMIL (see Section II-B), with the significative difference
that the latent embedding space was also trained to be robust
to instance-level reconstruction (and, thus, capable to detect
00D samples) using a deterministic autoencoder.

C. OUT-OF-DISTRIBUTION DETECTION

One of the most important advantages of VAEABMIL and
DAEABMIL is their capability to model the instance-level data
distribution p(x) and, hence, detect 0OOD bag samples. In this
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work, we propose to use an aggregation of the instance-level
log marginal likelihood as the bag-level 0OD score. This score
is motivated by the probabilistic meaning of the marginal
likelihood: the lower marginal likelihood of x, the higher
probability of x being OOD.

To calculate this score, for each instance xl* we first
consider z;, the unsupervised random representation of x}‘,
to compute the marginal distribution p(x}) which can be
obtained using importance sampling with S Monte Carlo
samples as:

pe(x: | Z)p(z?)
pxt) = / A B A
l g | x) 7
— By [pe(X? IZ?)p(Z?)}
_— Z7 | x>
WHERD | gz | XY)
. ipe(x-* | 2 )
S& @ 1x

* * *
(z; | x7) dz;

(14)

This marginal distribution indicates how likely it is
that a sample belongs to the training data distribution.
We aggregate the instance-level score using the mean to
compute VAEABMIL’s bag-level OOD score as:

Z {~logp (x;

The higher the LOGPX score, the more likely the bag is
00D. Algorithmically, given a test bag X*, the posterior
distribution gg(z; | X}) of each of its instances is computed
using Equation (4). Then, we sample S times from the
approximated posterior of each instance, obtaining z;‘(s) for
i=1,---,Nyand(s) =1, ---,S. Wethen use Equation (14)
to obtain an approximation of the marginal likelihood of
each instance. Lastly the instance-level scores are aggregated
using Equation (15). As a note, other aggregations (such as
the maximum of the minus log marginal likelihoods) could
be considered, but we have found the mean to be the best
in practice (see the results with the MAX aggregation in
Appendix B).

In the case of DAEABMIL, we can not compute the log
marginal likelihood since the model is no longer probabilistic.
However, we can compare the reconstruction with the original
sample to see if the deterministic autoencoder can accurately
reconstruct it. Since we expect OOD samples to have higher
reconstruction errors, we propose to use the mean of the
reconstruction errors as DAEABMIL’s bag-level OOD score:

LOGPX(X*) :=

)} 15)

RECERR(X™) :=

Zlix —mp@)|”. (16)

As in the previous case, higher reconstruction errors indicate
a higher chance of a sample being OOD. Algorithmically,
given a test bag X* we first compute its deterministic latent
representation Z*. Then, we reconstruct each instance using
the decoder my(z) and the bag-level OOD score is obtained
using Equation (16).
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Interestingly, we have provided our model with prediction
and OOD detection capabilities. We have constrained the
latent representations to be useful for the classification task
but also for the 0OD detection task. The defined OOD scores
reflect the probability that an input belongs to the training
distribution. Thus, they provide reliable and interpretable,
tailored to the data, OOD scores in MIL settings. Recall
that existing MIL models must rely on model-agnostic OOD
scores “‘metrics derived from the model’s output rather than
the underlying data distribution” to estimate the likelihood
of an input being OOD.

IV. EXPERIMENTS

In this section we first describe the datasets, the experimental
methodology, and the models used. This description is
followed by the results supported by figures and graphical
tables. A discussion of the limitations of the proposed
approach concludes the section.

A. DATASETS

Four different datasets are used to validate our proposed
approach. The Camelyon16 (CAM16) dataset [47] is used to
address the task of detecting metastases in hematoxylin and
eosin (H&E) stained WSIs of breast cancer metastases. It is
composed of 270 training and 130 test images. This dataset
is public and it was presented in the Camelyonl6 Grand
Challenge.!

The Panda (PANDA) dataset [48] is a public dataset that was
presented in the Panda Grand Challenge?. It contains prostate
tissue WSIs. Here we use it for a binary cancer-no cancer
classification problem. In total, PANDA contains 8822 training
slides and 1794 test slides.

Studies of sentinel lymph node biopsies for breast cancer
show that 1.6% contain lymphoma. The third dataset (BCELL)
contain 26 lymph node tissue WSIs diagnosed with diffuse
large B-cell lymphoma. Here it will be used as OOD data.

The fourth dataset (ARTIF) contains 27 prostate tissue slides
with different types of artifacts such as blur, foreign tissue or
technical artifacts. Here it will be used as 00D data. This is
a very interesting challenge since artifacts commonly appear
in real-world clinical scenarios.

The datasets have been carefully selected to offer a great
variability of scenarios. Two different main tissue types are
used for training (breast CAM16 and prostate in PANDA). Those
datasets also present differences in the size of their WSIs and,
hence, in the average number of extracted patches per slide.
In the experiments BCELL will be used as 00D for CAM16 since
they both contain lymph node tissue. ARTIF will be used as
00D for PANDA. Both contain prostate WSIs.

The four datasets are processed as follows. For each image,
512 x 512 pixel patches (instance) are extracted with the
highest available resolution. The provided masks in CAM16
and PANDA are used to produce bag labels while instances

Link to Camelyon16’s challenge.
2Link to Panda’s challenge.
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remain unlabelled. Since prostate tissue biopsies (PANDA)
are smaller than lymph node sections (CAMI16), PANDA
bags contain on average a smaller number of instances.
Patch features are then extracted utilizing two different
pre-trained models: Resnet50 with Barlow Twins (BT) self-
supervised learning [49], using the weights provided in [50],
and the general-purpose self-supervised foundation model
for pathology UNI [51]. UNI was trained using more than
100 million images across 20 major tissue types. The usage
of these two feature extractors allows the analysis of their
influence in the classification and OOD detection tasks.
Patches and feature extraction is performed using the code
from CLAM [52].3

Classification ooD Classification 0ooD
Train/Test Detection Train/Test Detection
CAMELYON16 BCELL CAMELYON16 PANDA
Lymph Lymph Lymph Breast
PANDA ARTIFACTS PANDA CAMELYON16
Prostate Prostate Breast Lymph

Near OOD experiments. Far 00D experiments.

FIGURE 3. Graphical description of Near and Far 0OD experiments. The
main tissue type is indicated under the dataset name. Each experiment is
performed using two feature extractors (UNI and BT).

B. EXPERIMENTAL DESIGN

In this work, we assume that detecting OOD samples is a test-
time task. That is, our training (IND) datasets will be free from
00D data, and the 0OD samples will appear during testing.
Thus, to evaluate each model, each experiment consists of two
different steps:

1) Classification step, where each model is trained on
IND datasets (CAM16 and PANDA, independently), and
evaluated in the IND test set.

2) 00D detection step, where we use the already trained
models to measure their OOD detection performance
using an OOD dataset.

For the classification task, the proposed models are
compared with the following five SOTA MIL models: DTFDMIL
[15] which uses pseudo bags to create a double-tier MIL
with distilled bag features, TRANSMIL [12], which uses a
Transformer architecture to create bag representations which
take into account instance correlations, DSMIL [14], which
uses instance correlations adding a pyramidal fusion of
WwsI features, and CLAM [52], which uses multiple attention
branches for each class. Lastly, we also use the baseline
ABMIL [11].

In the 00D detection task, we create four pairs of datasets
(IND data, OOD data): (CAMI16, BCELL), (PANDA, ARTIF),
(CAM16, PANDA), (PANDA, CAMI16) . In the first two pairs,
(cAM16, BCELL), (PANDA, ARTIF), IND and OOD slides share
the main tissue. Therefore these experiments are defined as
Near 00D detection scenarios, representing a harder OOD task
due to the similarity of the tissues present in the slides. The

3CLAM’s code in GitHub.
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other two pairs are considered a Far 00D detection problem.
A summary of these experiments can be found in Figure 3.

To perform the OOD detection task, bag-level OOD
scores are computed. LOGPX (Equation (15)) and RECERR
(Equation (16)) are respectively proposed for VAEABMIL and
DAEABMIL. For the models we compare against, since they are
not designed to handle IND/OOD discrimination, we resort to
post-hoc 00D scores. Using the model logits £, we compute
the Maximum Logit Score (MLS) [26] and the Entropy of the
prediction [23], which (for a two class problem) takes the
form

H(p) = — (plogp + (1 — p)log(l —p)) . 7)

with p = sigmoid(¢). Entropy and MLS scores are also
computed for VAEABMIL and DAEABMIL. In this section,
we report, for each model, the highest metric value obtained
across all the 0OD scores. In Appendix B, we provide
complete results for all models with the different OOD scoring
methods. Notice that other model-agnostic OOD scores could
be selected, but Entropy and MLS are the most frequently used
in the OOD literature.

To compare the results, AUC [53] is used. It quantifies a
model’s ability to distinguish between positive and negative
classes across all possible classification thresholds. In the
classification task, model logits are used to compute the AUC.
In the 0OD detection task, the AUC is computed based on the
00D scores obtained for each model.

C. IMPLEMENTATION DETAILS

Each model is run three times with different train/validation
splits to provide statistically reliable results. We split 20% of
the train set and used it as the validation set. We train each
model for 100 epochs in CAMI16 and 50 in PANDA with no
early stopping, using a learning rate of 10~ for all the models
but TRANSMIL, for which we use 107>. For each run, test
metrics are computed using the model weights corresponding
to the highest validation AUC achieved during training. We
code the models using Pytorch [54], and we use the Adam
optimizer [55].

For the architecture of VAEABMIL and DAEABMIL, in both
cases we use simple autoencoders composed of three linear
layers with sizes [512,256, 128] as the encoder and we
utilize the same dimensions for the decoder. In DAEABMIL,
weuse u = l,and e = B = 0.3 in Eq. (12) to
train the model. To predict the variances in VAEABMIL,
we produce a single value that is used across all the latent
dimensions and use S = 1 Monte Carlo sample for inference.
The models are trained in a single Nvidia 3090 GPU with
24 gigabytes of RAM. The rest of the model follows the
implementation of the original ABMIL. The code is available
at https://github.com/fjsaezm/VAEABMIL.

D. CLASSIFICATION RESULTS

Figure 4 shows the AUC metric in the bag classification
task for CAM16 and PANDA, using both BT and UNI feature
extractors.
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(a) Classification results in Camelyon16
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(b) Classification results in Panda

FIGURE 4. Classification results for both cami6 and PANDA datasets. The
presented metric is the test Auc(right is better). Mean and standard
deviations are reported for each model. The results with both feature
extractors are separated by the horizontal dashed line. The vertical,
dashed lines represent the mean performance of the models using each
feature extractor.

For the cAM16 dataset, Figure 4a shows that the models
are, regardless the feature extractor, very accurate for this
benign/malignant classification, with the worst performance
being better than 0.95 AuC. With both feature extractors,
VAEABMIL and DAEABMIL perform similarly to the rest of the
models. In the cases where our models perform worse than the
rest, the highest difference in AUC does not exceed 1%. This
is compensated by their additional OOD detection capabilities.
Comparing the results across the different feature extractors,
the models perform clearly better when using UNI. This is
observed in the vertical dashed black lines, which represent
the average of the means of all the models using the
corresponding features. This indicates that UNI produces
excellent features of the patches, facilitating the classification
task.
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(a) Approximated densities of the predicted unnormalized attention values f in positive slides from CAM16 and PANDA, using UNI features.

Dataset VAEABMIL DAEABMIL ABMIL CLAM DTFDMIL DSMIL TRANSMIL
CAMI16 0.9299.018 0.8460.063 0.9760.009 0.980¢.006 0.980¢.005 0.987p.001 0.6530.069
PANDA 0.7679.002 0.7740.012 0.8059.002 0.7980p.010 0.822¢.006 0.804¢.002 0.6200.060

(b) Instance-Level AUC (using the unnormalized attention values) obtained by all the models using UNI features in both CAM16 and PANDA

datasets. Mean and standard deviations are reported.

FIGURE 5. Instance-level results, using the unnormalized attention values f and uni features.

Figure 4b presents the classification results on the PANDA
dataset, which show trends similar to those observed
in CAM16. When using BT features, VAEABMIL performs
approximately 2% worse than the other models, whereas
DAEABMIL performs comparably to the SOTA methods. This
2% performance gap between VAEABMIL and DAEABMIL
is also observed in CAMI6, highlighting the optimization
advantages of DAEABMIL over VAEABMIL for classification
tasks using BT features. In contrast, when using UNI features,
all models achieve near-perfect classification performance,
with AUC scores exceeding 0.98.

To conclude this section, we compare the attention values
(Equation (2)), provided by each classifier. Figure 5a shows
the instance-level attention prediction in positive bags in both
CAM16 and PANDA, using UNI features. Visually, VAEABMIL
performs better than DAEABMIL in CAMI6 and equally in
PANDA, emphasizing the benefits of obtaining a probabilistic,
continuous latent space. This is confirmed by the quantitative
results shown in Table 5b. Compared with the rest of the
models (except for TRANSMIL), we observe that the proposed
models perform slightly worse. However, as it was shown
in Figure 4, the bag-level performance of our methods is
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similar to that of the rest of the models. Notice that, similarly,
TRANSMIL obtains poor attention values but high bag-level
classification metrics.

E. FAR ooDp DETECTION

00D detection results are now presented, starting with Far
00D experiments, where IND and 00D data do not share the
main tissue type and, therefore, we expect an easier task.
Results shown in this section are supported by the statistical
significance analysis performed in Appendix A.

1) (CAM16, PANDA)

Models trained with cAM16 (see the classification perfor-
mance in Section IV-D) are now evaluated using PANDA
as 00D dataset. Figure 6a shows that, when BT features
are used, VAEABMIL obtains the best OOD detection result,
and DAEABMIL is on average with the rest of the models.
Such behaviour is caused by two main reasons: a) The
difficulties in the two-task optimization process which our
proposal suffers from (specified in Section IV-G), and b) the
deterministic latent space in DAEABMIL might not be flexible
enough to produce far-apart representations for the CAM16 and
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FIGURE 6. Far ooD detection results. The presented metric is the Auc(right is better). Mean and standard
deviations (which are almost zero in some cases) are reported for each model. The results with both
feature extractors are separated by the horizontal dashed line. The vertical, dashed lines represent the
mean performance of the models using each feature extractor.
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FIGURE 7. Approximated densities of the bag-level 00D scores produced by the models in the Far oop detection experiments, using UNI features.

PANDA datasets. This highlights the benefits of the smooth, However, our models obtain the best result in OOD detection

probabilistic latent space that the VAE in VAEABMIL produces. due to their explicit data-distribution modelling capability.

Also in Figure 6a, when using UNI features, the OOD detection Figure 7a, shows the slide-level 0OD score for all the
performance of the rest of the models increases, due to the models using UNI features. In this case, and although our
highly refined features that this foundation model produces. proposals still perform better than the others, we observe
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FIGURE 8. Approximated densities of the instance-level 00D scores produced by VAEABMIL and DAEABMIL in the Far 00D detection experiments

using UNI features.

an also good performance by TRANSMIL and ABMIL, which
also produce two different distributions for IND and OOD
bags. Figure 8a shows the instance-level predicted OOD scores
by our models, using UNI features.* The separation that
our models produce is large enough to clearly distinguish
between IND and OOD instances. This is coherent with the fact
that the slides in this OOD detection problem contain different
types of tissue.

2) (PANDA, CAM16)

Now, we use PANDA ad IND dataset and CAM16 as OOD dataset.
Figure 6b shows the OOD detection results. The results are
similar to those obtained in the previous experiment: we again
observe that DAEABMIL performs on pair with the rest of the
models. This supports our idea that the features produced by
BT for PANDA and CAMI16 are not discriminative enough to
differentiate them through a deterministic autoencoder which
produces a non-continuous latent space. VAEABMIL, however,
obtains a perfect AUC score, highlighting the benefits of using
a continuous, probabilistic latent space and modelling the
likelihood of the data to detect out of distribution samples.
When using UNI features, DAEABMIL and VAEABMIL are
capable to detect all OOD bags correctly, outperforming the
rest of the models.

Figure 7b depicts the bag-level OOD scores obtained by
all the models, showing that thanks to UNI features, all the
models separate the distributions of the IND and OOD sets,
with VAEABMIL and DAEABMIL doing it perfectly. The good
AUC results are supported by the correct instance-level 0OD
discrimination shown in Figure 8b, where in both cases we
observe a instance-level separation between IND and OOD
scores.

F. NEAR ooD DETECTION

To end the experimental section, we present the Near OOD
detection problems where, as indicated in Section IV-B,
the IND dataset and the OOD dataset share the main tissue
type. The results shown in this section are supported by the
statistical significance analysis performed in AppendixA.

4Remark that the rest of the models can not predict instance-level OOD
scores.
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1) (CAM16, BCELL)

In this scenario, IND and OOD WSIs share the main tissue
type but differ in their medical diagnosis. As described
in Section IV-A, positive slides in CAM16 present cancer
metastasis in lymph node sections, while BCELL WSIs have
been diagnosed with diffuse large B-cell lymphoma. This
poses, a priori, a more difficult OOD detection problem.
Figure 9a shows, the 00D detection results. Observing this
Figure, we highlight that:

e VAEABMIL and DAEABMIL excel at detecting OOD sam-
ples, obtaining an almost perfect AUC using any of the
used features. This indicates that the autoencoders in
both methods have learned to assign higher LOGPX and
RECERR, respectively, to OOD samples than to IND ones.

« We observe considerably worse results for the rest
of the models. When using BT features, the AUC is
approximately 0.6 in some cases, indicating that the
entropy of the predictions is the same for both IND and
00D data. This is an important problem with current
SOTA MIL models, since their predictions are not well
calibrated and can not detect OOD samples. This poses
an important problem for their use in real diagnosis
applications.

¢ When UNI features are used, the rest of the models
show a strong improvement in the OOD detection, which
correlates with the improvement in the classification
AUC. We state that the foundation model UNI pro-
duces more discriminative features for the downstream
tasks, separating OOD instances further away from IND
data.

Figure 10a displays the WSI-level 0OD score produced by
each of the models. This figure reveals that the rest of the
models assign very similar OOD scores to IND and OOD WSIs,
which is a key drawback when using those models in a real
world scenario like the one we are presenting. Our models,
in contrast, produce separated distributions that may alert the
pathologist when diagnosing a patient. Although TRANSMIL
and ABMIL may seem to differentiate between IND and OOD
distributions, the AUC metric in Figure 9a reveals that their
00D detection performance is still worse than VAEABMIL
and DAEABMIL. Figure 11a, shows the instance-level OOD
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FIGURE 9. Near ooD detection results. The presented metric is the Auc(right is better). Mean and standard
deviations (which are almost zero in some cases) are reported for each model. The results with both feature
extractors are separated by the horizontal dashed line. The vertical, dashed lines represent the mean
performance of the models using each feature extractor.
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FIGURE 10. Approximated densities of the bag-level 00D scores produced by the models in the Near 00D detection experiments, using UNI features.

predictions of VAEABMIL and DAEABMIL, using UNI features.
We observe that, even though there is overlapping between
the estimated densities of the scores of IND and OOD instances,
there is a shift in the mean of the distributions of IND and

133362

00D instances, specially in VAEABMIL. Such distribution shift
is the cause of the remarkable OOD detection capabilities
of our models. Thanks to averaging the instance-level OOD
scores, OOD bags are perfectly detected. Notice that the
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FIGURE 11. Approximated densities of the instance-level 00D scores produced by VAEABMIL and DAEABMIL in the Near 00D detection experiments
using UNI features.
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FIGURE 12. Top row: — log p(x) values obtained by VAEABMIL for each patch in both IND and 00D wsis. Bottom Row: reconstruction error
of each patch in both IND and 00D wsis, obtained by DAEABMIL. In each rows, UNI features are used, and the predicted instance-level
values are jointly normalized along the wsis. VAEABMIL and DAEABMIL assign similar instance-level 0oD scores in IND samples, being much
higher in the oop dataset (BCELL) than in the IND one (CAM16).
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FIGURE 13. Visualization of two wsis from the ARTIF dataset containing annotated artifacts. The corresponding instance-level oop scores
predicted by vaEABMmIL and masks are shown. Each row corresponds to a different case. It is observed how VAEABMIL assigns higher 00D scores
to the regions identified as artifacts in the mask.
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FIGURE 14. Validation Auc for all the trained models in the cami6 dataset
using features from UNI. Mean and 95% confidence intervals are shown
per each model. The convergence of VAEABMIL is slower than that of the
rest of the models. Also, DAEABMIL shows a performance decrease due to
the double-objective optimization task.

instance-level OOD scores show which areas of the WSI are
poorly reconstructed by the autoencoders and are, thus, more
relevant to identify the slide as 0OD. We show an example
of this behaviour in Figure 12, where higher instance-level
RECERR/LOGPX are obtained in BCELL (OOD) compared to the
CAMI16 (IND) patches.

2) (PANDA, ARTIF)
In the last experiment, we assess the OOD detection capa-
bilities of our models in another real clinical scenario.
Models trained in PANDA are evaluated by testing their ability
to identify prostate slides containing pathologist-annotated
artifacts. This represents a highly relevant case, as artifacts
are commonly encountered in real-world WsIs. Figure 9b
shows that our models, specially VAEABMIL, outperform the
SOTA models in this task when using BT features. When
using UNI features, the difference between our proposals
and the SOTA models also becomes clear for DAEABMIL,
which highlights the importance of using a foundation model
as feature extractor for OOD detection tasks. This is also
observed in the estimated densities of the bag-level OOD
scores shown in Figure 10b. The conclusions are the same
as the ones presented in Section I'V-F1, showing consistency
of our method. These results are clear indicator of the benefits
of our proposal: our models present a novel approach that can
perform the classification task on pair with the SOTA models
while clearly outperforming them in the OOD detection task.
Figure 11b shows overlapping between IND and OOD
instance-level distributions for this experiment. This is an
expected behaviour since ARTIF contains prostate tissue as
PANDA does. However, thanks to aggregating the scores in the
whole bags, artifact-containing bags are correctly identified
as 00D. Furthermore, in Figure 13 we leverage the instance-
level 0OD score provided by VAEABMIL to show that our
proposal can be used to locate artifacts. This provides a visual
tool for pathologists, adding to VAEABMIL high value for
clinical use.

G. LIMITATIONS
Both proposed models exhibit one main limitation when
compared to the other deep MIL models: our methods are
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harder to optimize than the rest. The reason for this is that,
in both cases, the loss function to be optimized is composed
of a classification-related term and two OOD detection-related
terms. Thus, jointly optimizing all the terms compromises
the effectiveness of the model, specially in the classification
task, as we have observed in the results. This can also be
observed in Figure 14, where we plot the classification AUC
in the validation set during the optimization process in the
CAMI16 dataset using UNI features. We observe that VAEABMIL
converges slower than the rest of the models. DAEABMIL,
converges as fast as CLAM, but lowers its performance as the
training process advances due to the need to also optimize for
instance-level reconstruction task.

Nevertheless, even with this limitation, our proposals
obtain comparable classification results and better OOD
detection metrics, making them very useful in real-world
scenarios.

V. CONCLUSION AND FUTURE WORK

While the apparition of OOD samples is very frequent
in digital pathology, current MIL SOTA methods are not
designed to reliably quantify whether a test bag belongs
to the training data distribution. This limitation poses a
great risk of incorrect predictions when unexpected tissues
are encountered in real-world clinical settings. With this
motivation, we propose a novel probabilistic deep MIL method
with 00D capabilities. Our model, VAEABMIL, generalizes the
well-known ABMIL using a VAE to model the data distribution,
which gives the MIL method the ability to detect 0OD samples
by aggregating the marginal likelihood of the instances as an
00D score. Also, we have proposed a deterministic version,
DAEABMIL, which leverages the reconstruction error as a
deterministic OOD score. The main novelty of the proposed
models is that they are defined and trained to perform two
different tasks (bag-level classification and OOD detection)
simultaneously, which none of the previous MIL methods is
doing.

Extensive experimentation shows that VAEABMIL and
DAEABMIL are competitive with the rest of the SOTA methods
in the classification task. Furthermore, and very importantly
for the design of CAD systems, they outperform current MIL
methods at detecting OOD samples in both Near and Far 00D
scenarios. The experiments also highlight the importance of
using a foundation model as a feature extractor.

This work opens several promising directions for future
research. One possibility is to extend the use of a VAE
in combination with more complex MIL methods such as
TRANSMIL or DTFDMIL. Another is to explore alternative
generative models for learning the data distribution. Both
approaches have the potential to enhance the OOD detection
performance of MIL models.

APPENDIX A

STATISTICAL SIGNIFICANCE TEST

To assess whether differences in model performance in the
00D detection task are statistically significant, we employ
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TABLE 1. T-test results comparing the 00D Auc in the (CAm16,PANDA) experiment using UNI features.

Model OoD/auroc t_stat p_value  Significant Model OoD/auroc t_stat p_value  Significant
vaeabmil  0.9999 4 0.0001 - - - daeabmil  0.9923 £ 0.0001 - - -
transmil 0.9690 £ 0.0059 8.9761 0.0122 True transmil 0.9690 + 0.0059 6.7671 0.0211 True
clam 0.8300 4 0.1985 1.4827 0.2764 False clam 0.8300 % 0.1985 14161 0.2924 False
dsmil 0.9438 4 0.0224 4.3511 0.0490 True dsmil 0.9438 + 0.0224 3.7590 0.0640 False
dftdmil 0.9497 £ 0.0351 2.4722 0.1320 False dftdmil 0.9497 + 0.0351 2.0995 0.1706 False
daeabmil  0.9923 + 0.0001  352.6000  0.0000 True vaeabmil  0.9999 + 0.0001  -352.6000  0.0000 True
abmil 0.9544 4+ 0.0135 5.8111 0.0284 True abmil 0.9544 + 0.0135 4.8494 0.0400 True
(a) Statistical comparison for VAEABMIL (b) Statistical comparison for DAEABMIL
TABLE 2. T-test results comparing the 00D Auc in the (cAm16,BCELL) experiment using UNI features.
Model OoD/auroc t_stat p_value  Significant Model OoD/auroc t_stat p_value  Significant
vaecabmil  0.9592 =+ 0.0030 - - - daeabmil  0.9704 £ 0.0084 - - -
transmil 0.8772 £ 0.0398 3.3333 0.0794 False transmil 0.8772 £0.0398  4.8397 0.0401 True
clam 0.8185 £ 0.0560  4.4629 0.0467 True clam 0.8185 £ 0.0560  4.4932 0.0461 True
dsmil 0.8784 £ 0.0100  10.7940  0.0085 True dsmil 0.8784 £ 0.0100  38.1552  0.0007 True
dftdmil 0.8045 £ 0.0466  5.7613 0.0288 True dftdmil 0.8045 + 0.0466 6.2819 0.0244 True
daeabmil  0.9704 4+ 0.0084  -1.7167 0.2282 False vaeabmil  0.9592 4+ 0.0030 1.7167 0.2282 False
abmil 0.8987 + 0.0277 3.9603 0.0582 False abmil 0.8987 £+ 0.0277  4.0565 0.0557 False
(a) Statistical comparison for VAEABMIL (b) Statistical comparison for DAEABMIL
TABLE 3. T-test results comparing the 00D Auc in the (PANDA,CAM16) experiment using UNI features.

Model OoD/auroc t_stat p_value  Significant Model OoD/auroc t_stat p_value  Significant
vaecabmil  1.0000 == 0.0000 - - - daeabmil  1.0000 £ 0.0000 - - -
daeabmil  1.0000 4 0.0000  2.0000 0.1835 False vaeabmil ~ 1.0000 4 0.0000  -2.0000 0.1835 False
dsmil 0.7926 £+ 0.0306  11.7303  0.0072 True dsmil 0.7926 +£ 0.0306  11.7294  0.0072 True
clam 0.6966 + 0.0516  10.1895  0.0095 True clam 0.6966 £+ 0.0516  10.1893  0.0095 True
dftdmil 0.9436 + 0.0298 3.2799 0.0817 False dftdmil 0.9436 + 0.0298 3.2798 0.0817 False
transmil 0.9106 + 0.0223 6.9357 0.0202 True transmil 0.9106 + 0.0223 6.9359 0.0202 True
abmil 0.9590 £ 0.0069  10.3725  0.0092 True abmil 0.9590 £ 0.0069  10.3694  0.0092 True

(a) Statistical comparison for VAEABMIL

Bag count

0- T T T
0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175

FIGURE 15. Histogram of the proportion of each wsi covered by an
artifact in the ARTIF dataset. The proportion does not exceed 17.5%.

the paired t-test, a parametric test designed to compare
two related samples [56]. In our case, since we executed
n = 3 train/test partitions per model, we compare the
00D detection AUC of each model in each partition with
the results of rest of the models in the same partition. The
paired t-test evaluates whether the mean difference between
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(b) Statistical comparison for DAEABMIL

these paired scores is significantly different from zero under
the assumption that the differences are normally distributed.
To achieve this, we compute the statistic t_stat = d- Jn/sd,
where d is the mean difference of the results in each of the
n splits and s; is the standard deviation of the differences.
This test is ideal here because it accounts for the dependencies
between the two sets of scores by considering that they were
computed on the same data partitions.

Tables 1, 2, 3, and 4 show the results of comparing both
VAEABMIL and DAEABMIL with current SOTA models across
the different performed experiments using the UNI feature
extractor. Using a level of significance of 0.05, the results
show that:

o The differences between the results of VAEABMIL and
DAEABMIL are not significant in any case. This highlights
the fact that, when using UNI features, both models
perform equally at detecting OOD samples.

o In the (PANDA, ARTIF) experiment, the differences
between our proposals and the SOTA models are always
significant, as shown in Table 4. The reason for this is
that those methods do not model the data distribution,
making post-hoc 00D scores worse in this scenario.
Furthermore, the artifacts are, in proportion, much
smaller than the main tissue, as shown in Figure 15.
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TABLE 4. T-test results comparing the 00D Auc in the (PANDA,ARTIF) experiment using UNI features.

Model OoD/auroc t_stat p_value  Significant Model OoD/auroc t_stat p_value  Significant
vaeabmil  0.9993 + 0.0004 - - - daeabmil  0.9988 + 0.0001 - - -
daeabmil  0.9988 £ 0.0001 2.2618 0.1521 False vaeabmil  0.9993 4+ 0.0004  -2.2618 0.1521 False
dsmil 0.5408 + 0.0386  20.3737  0.0024 True dsmil 0.5408 + 0.0386  20.5614  0.0024 True
clam 0.6794 £ 0.0276  20.3732  0.0024 True clam 0.6794 £ 0.0276  20.0429  0.0025 True
dftdmil 0.6883 £+ 0.0300 18.1359  0.0030 True dftdmil 0.6883 + 0.0300 17.9140  0.0031 True
transmil 0.6982 + 0.0410  12.8230  0.0060 True transmil 0.6982 + 0.0410  12.6833 0.0062 True
abmil 0.7546 £ 0.0255 16.7655  0.0035 True abmil 0.7546 £ 0.0255 16.5333 0.0036 True

(a) Statistical comparison for VAEABMIL

(b) Statistical comparison for DAEABMIL

TABLE 5. Tables with the oop detection results using multiple 00D scores. MLs stands for Maximum Logit score. In the scores defined for vAeABMmIL and
DAEABMIL, MAX and MEAN indicate the Maximum aggregator and the Mean aggregator, respectively.

OoD/LOGPXMEAN/auc ~ OoD/RECERRMAX/auc ~ OoD/RECERRMEAN/auc

Model OoD/Entropy/auc ~ OoD/MLS/auc ~ OoD/LOGPXMAX/auc
abmil 0.954 £+ 0.013 0.935 £ 0.031 -
clam 0.830 £+ 0.199 0.826 £ 0.203 -

daeabmil 0.963 £ 0.011 0.968 £ 0.007 -
dftdmil 0.950 £ 0.035 0.961 £ 0.015 N

dsmil 0.944 £ 0.022 0.923 £+ 0.019 -
transmil 0.969 £ 0.006 0.960 £ 0.013 -
vaeabmil 0.979 £ 0.007 0.970 £ 0.011 0.680 £ 0.109

- 0.457 £ 0.031 0.992 £ 0.000

1.000 £ 0.000 - -

(a) 00D detection results for the different OOD scores in the (CAM16, PANDA) experiment.

Model OoD/Entropy/auc ~ OoD/MLS/auc ~ OoD/LOGPXMAX/auc

OoD/LOGPXMEAN/auc ~ OoD/RECERRMAX/auc ~ OoD/RECERRMEAN/auc

abmil 0.899 £ 0.028 0.867 £ 0.046 -
clam 0.726 £ 0.071 0.722 £ 0.070 -
daeabmil 0.891 £ 0.027 0.916 £ 0.027 N
dftdmil 0.803 £ 0.049 0.790 £ 0.053 -
dsmil 0.878 £ 0.010 0.864 £ 0.003 -
transmil 0.877 £ 0.040 0.836 £ 0.072 -
vaeabmil 0.882 £ 0.035 0.877 £ 0.022 0.828 £ 0.027

- 0.848 £ 0.006 0.970 £ 0.008

0.959 £ 0.003 - -

(b) 00D detection results for the different OOD scores in the (CAM16, BCELL) experiment.

Model OoD/Entropy/auc ~ OoD/MLS/auc ~ OoD/LOGPXMAX/auc

OoD/LOGPXMEAN/auc  OoD/RECERRMAX/auc  OoD/RECERRMEAN/auc

abmil 0.959 £ 0.007 0.956 £ 0.005 -
clam 0.697 £ 0.052 0.654 £ 0.045 N
daeabmil 0.333 £ 0.156 0.334 £+ 0.156 -
dftdmil 0.944 £ 0.030 0.949 £ 0.025 -

dsmil 0.793 £+ 0.031 0.833 £ 0.032 -
transmil 0.911 £ 0.022 0.888 £ 0.033 -
vaeabmil 0.965 £+ 0.016 0.982 £+ 0.013 1.000 £ 0.000

- 0.999 £ 0.000 1.000 £ 0.000

1.000 £ 0.000 - -

(c) 00D detection results for the different OOD scores in the (PANDA, CAM16) experiment.

Model OoD/Entropy/auc ~ OoD/MLS/auc ~ OoD/LOGPXMAX/auc

OoD/LOGPXMEAN/auc ~ OoD/RECERRMAX/auc ~ OoD/RECERRMEAN/auc

abmil 0.755 £ 0.025 0.771 £ 0.027 N
clam 0.679 £ 0.028 0.646 £ 0.029 -
daeabmil 0.327 £ 0.076 0.344 £ 0.088 -
dftdmil 0.689 £ 0.029 0.704 £ 0.036 -
dsmil 0.541 £ 0.039 0.566 £ 0.037 -
transmil 0.698 £ 0.041 0.688 £ 0.049 -
vaeabmil 0.738 £ 0.026 0.771 £ 0.036 1.000 £ 0.000

- 0.998 £ 0.001 0.999 £ 0.000

0.999 £ 0.000 - -

(d) 00D detection results for the different OOD scores in the (PANDA, ARTIF) experiment.

o In the (CAMI16, PANDA), (CAM16, BCELL) and (PANDA,
CAMI16) experiments, some of the SOTA models obtain
non-significant differences according to the paired t-
test. However, we observe that the standard deviation
of the ooD/auroc in our models is much smaller than
in the rest of the models. Hence, we state that if
the high variance was maintained when increasing the
number of executions, the results would change to obtain
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significant differences between our proposals and the
SOTA MIL models.

APPENDIX B

RESULTS WITH ALL THE oob SCORES

To provide a comprehensive analysis of the performance of
the different OOD scores across the used models, we present
the complete results in Table 5. The results show that, for
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ABMIL, TRANSMIL, and CLAM, the Entropy score obtained the
highest OOD detection results in all cases. In DTFDMIL, the
MLS achieves the best results except in the (CAM16, BCELL)
scenario. In DSMIL, the Entropy is a better 0OD detector when
the IND dataset is CAM16, and the MLS performs better when
the IND dataset is PANDA.

Regarding the proposed models, we observe that using the
MEAN aggregator yields better results than the MAX aggrega-
tor in all cases except for the (PANDA, ARTIF) experiment. The
difference between the aggregator is, however, negligible in
that case. In other cases, such as when considering CAM16 as
the IND dataset, the MAX aggregator struggles to detect 0OD
samples while applying the mean aggregator provides much
better results.

In summary, when using the MEAN aggregator for LOGPX in
VAEABMIL and for RECERR in DAEABMIL, the proposed models
obtain the best performance in the OOD detection task.
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